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𝝈𝝈𝒔𝒔𝒔𝒔(𝑹𝑹𝑹𝑹,𝝀𝝀), strongly depends on RH

Aerosols and Climate

Aerosol Particle

Relative Humidity

HYGROSCOPICITY:

o Aerosols have direct and indirect effects on the Earth’s energy 
balance
 Scatter (σsp) and absorb solar radiation 
 Influence the number of cloud condensation nuclei

Since aerosol particles can take up water, they can change in 
size and chemical composition depending on the ambient 
relative humidity (RH)

The effect of water uptake is relevant for climate forcing calculations as well as for the comparison or 
validation of remote sensing with in-situ measurements and for the improvement of Earth System Models

SCATTERING ENHANCEMENT FACTOR

𝑓𝑓 𝑅𝑅𝑅𝑅, 𝜆𝜆 =
𝜎𝜎𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅, 𝜆𝜆)

𝜎𝜎𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝜆𝜆)
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How well do Global Climate 
Models represent aerosol 

optical hygroscopic growth?  

This presentation 
summarizes our work, 
which is currently 
under review in ACP: 
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https://www.atmos-chem-phys-discuss.net/acp-2019-1190/


Hygroscopicity in Earth System Models:

Figures from Mian Chin (NASA Goddard)

ECHAM5: global annual average 76% GOCART: global annual average 40%

Interestingly, most models are doing well in reproducing the total aerosol optical depth (AOD), 
but a closer look into the individual components reveals discrepancies between them
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Fraction of aerosol optical depth due to water:



SCATTERING ENHANCEMENT FACTOR

𝑓𝑓 𝑅𝑅𝑅𝑅, 𝜆𝜆 =
𝜎𝜎𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅, 𝜆𝜆)

𝜎𝜎𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝜆𝜆) Arctic > DesertRural >Marine >

Burgos et al., 2019: 
f(RH) measurements from in-situ sites around 
the globe used to create a benchmark dataset
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https://www.nature.com/articles/s41597-019-0158-7


• 10 Models used in this study: 
• Three CAM-family models: CAM-ATRAS, CAM5, CAM-Oslo
• Three GEOS-family models: GEOS-Chem, GEOS-GOCART, MERRAero
• Four further models: OsloCTM3, TM5, IFS-AER, SALSA

• We work with the following output: 
• Aerosol optical data, absorption and extinction at RH=0, 40 and 85%, λ=550 nm
• Mass mixing ratio for five components: black carbon, desert dust, organic aerosols, 

sulfates, and sea salt

• The frequency is hourly or daily values for the year 2010. 
• An important aspect is that time coverage is not always coincident with measurements

• The extracted model data is for the closest grid point to 22 observational sites

• We have used simulated surface data (regardless of site elevation)
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MODEL DATA: INSITU project - AeroCom Phase III



MODEL Chemical 
composition

Mixing 
State Hygroscopicity [g(RH=90%)]

parameterization ss so4 bc oa dd

ATRAS bc,so4,oa,ss,dd 
+ no3/nh4 I ĸ-Köhler Theory 2.25 1.87 1.0 1.24 1.0

CAM bc,so4,oa,ss,dd I ĸ-Köhler Theory 2.25 1.77 1.0 1.24 1.2

CAM-Oslo bc,so4,oa,ss,dd I,E ĸ-Köhler Theory 2.28 1.77 1.0 1.31 1.2

GEOS-Chem bc,so4,oa,ss,dd
+ no3/nh4 E Modified GADS 2.38 1.64 1.4 1.64 1.0

GEOS-GOCART bc,so4,oa,ss,dd E Modified GADS 1.9-2.1 1.8 1.4 1.6 1.0

MERRAero bc,so4,oa,ss,dd E Modified GADS 1.9-2.1 1.8 1.4 1.64 1.0

OsloCMT3 bc,so4,oa,ss,dd
+ no3/nh4 I Own development 2.3-2.4 1.72 1.0 1.46 1.0

TM5 bc,so4,oa,ss,dd
+ no3/nh4 I, E Own development - - 1.0 1.0 1.0

IFS-AER bc,so4,oa,ss,dd
+ no3/nh4 E Own development 2.36 1.73 1.0 1.64 1.0

SALSA bc,so4,oa,ss,dd E Own development 2.4 1.9 1.0 1.5 1.0
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I. Comparison of modelled vs. measured f(RH)   (+ organic mass fraction)

II. Importance of temporal collocation: BRW, GRW and SGP sites

III. Graciosa as a test case for modeled sea salt hygroscopicity

IV. Analysis of the implications of the different definitions of RHref

In this presentation we focus on the sections I and III. 

To see the rest of the results, please take a look at our paper 
(ACPD)
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https://www.atmos-chem-phys-discuss.net/acp-2019-1190/
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𝑓𝑓 𝑅𝑅𝑅𝑅, λ = 550𝑛𝑛𝑛𝑛 =
𝜎𝜎𝑠𝑠𝑠𝑠 𝑅𝑅𝑅𝑅 = 85% ∗

𝜎𝜎𝑠𝑠𝑠𝑠(𝑅𝑅𝑅𝑅 = 40%)

*Chose RH=85% to minimize 
potential issues with hysteresisf(R
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- Quinn et al. 2005: parameterization based on measurements at CBG, GSN, KCO
- Zieger et al. 2015: same approach for MEL and HYY sites. 
- Zieger et al. 2015: Solid line including nitrate, black carbon, ammonia, and Cl
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005GL024322
https://www.atmos-chem-phys.net/15/7247/2015/


f(RH=85%) model vs measured:

• Models reproduce the range in measured f(RH)

• Good correlation coefficients for CAM and CAM-Oslo

CAM-family models

f(RH=85%) model vs OMF:

• CAM and CAM-Oslo exhibit similar relationship between 
f(RH) and Organic Mass Fraction as suggested by Quinn and 
Zieger parameterizations
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f(RH=85%) model vs measured:

• Models do not reproduce the range in measured f(RH) but 
values fall within 30% uncertainty 

• Lower correlation coefficients than for CAM-models

GEOS-family models

f(RH=85%) model vs OMF:

• Models do not exhibit same Organic Mass Fraction - f(RH) 
relationship as observations
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Diversity of behaviors:

• Good correlation for OsloCTM3 and TM5

• Inverse correlation for SALSA

OsloCTM3, TM5, IFS-AER, SALSA

• OsloCTM3 and IFS-AER agree well with 
parameterizations

• IFS-AER simulates aerosol  dominated by organics
• TM5 exhibits same tendency as paramerterizations

but overestimates f(RH) relative to Organic Mass 
Fraction

• SALSA is different
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Observational data and theoretical curves for inorganic sea salt 
and NaCl

(calculated using Mie theory as described in Zieger et al., 2013, 
and the revised hygroscopic growth factors of inorganic sea salt 
and NaCl determined by Zieger et al., 2017)

Zieger et al., 2017 has shown that inorganic sea salt:
Hydration curve: f(RH=40%) ≈ 1.2
Dehydration curve: f(RH=40%) = 2.0
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https://www.atmos-chem-phys.net/13/10609/2013/
https://www.nature.com/articles/ncomms15883
https://www.nature.com/articles/ncomms15883
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GEOS-Chem, OsloCTM3, TM5, IFS-AER, and SALSA: 
Are modelling sea salt as NaCl

• TM5: no hygroscopic growth up to RH=45%

• GEOS-Chem, IFS-AER, SALSA: don’t assume the 
aerosol to be solid at RH=40%

• SALSA: estimates slightly larger values -> smaller 
particle sizes
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ATRAS, CAM, CAM-Oslo, GEOS-GOCART, and MERRAero: 
Are modelling inorganic sea salt

At RH=40%:
• CAM, CAM-Oslo: values closer to the hydration curve
• ATRAS, GEOS-GOCART, MERRAero: values closer to the 

dehydration curve

Hysteresis range: always in between hydration/dehydration curves

At higher RH: 
• ATRAS lowest value 
• GEOS-GOCART, and MERRAero: best match
• CAM and CAM-Oslo: include hysteresis
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• Model assumptions about water uptake at low RH are a significant factor

• Different assumptions about the hygroscopicity of sea salt explain some model variation at a marine location
-> some models assume sea salt can be represented by NaCl, while others do not

• GEOS-family models assign too much hygroscopicity to all species (except dust)
-> (almost) regardless of simulated composition the resulting f(RH) will be high (exception dust dominated site)
-> narrow f(RH) range

• GEOS models all use Global Aerosol Data SET (GADS)* to parameterize growth so this high f(RH) is consistent
with findings by Zieger et al., 2013 showing overestimation at low RH
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Summary of main results:
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* GADS is a popular database on aerosol and cloud optical properties that is widely used by the scientific 
community since it provides a comprehensive set of microphysical and optical data of aerosol and clouds

https://www.atmos-chem-phys.net/13/10609/2013/


1. Measurements of particle light scattering enhancement factors have been compared
to a set of 10 Earth System Models

2. We see a high diversity in the comparison between models and measurements due
to the variability in the different assumptions related to hygroscopic growth and
chemical composition

3. Organic Mass Fraction can be used as a constraint or “sanity check” for the modelled
f(RH)

4. Aerosol mixing size and mixing state, as prescribed in the models, may have an
important influence too. Accounting for the exact contribution of each of these
factors is a challenge and more research needs to be carried out
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In conclusion:
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1. Temporal collocation between models and measurements was done for three sites. 
- Did not appear to improve the comparison of model simulations and observations relative to climatology
- Model diversity was larger than the variability in the observed long-term climatology

2. Model and measurement assumptions about ‘What is dry’ are different and need to be considered in these types of 
comparisons

Further results… check out our paper currently in ACPD
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Check out our project website

Maria Burgos, 
Stockholm University
For Questions, feel free to contact me at: 
Maria.Burgos@aces.su.se

Thanks for your attention!
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